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• General context of research activities
– French nuclear ILL & HL wastes management policy ruled by the Dec. 

30, 1991 French Parliament law = 3 main lines of research (1991-2006):
• Partitioning & transmutation (CEA)
• Deep geological repository (ANDRA)
• Waste conditioning & long-term interim storage (CEA)

Context / Global operational and R&D strategy

CAC REPO, EtLD

EtLD

CIRCECLTCGT BO

 DISPOSAL
Engineered barrier

Chemical degradation
Materials, aggressive ions,

cracking  ...

Containment capacity
Transport (D, K)

Radionuclides retention

pH plume Coupling
Degradation
Mechanics

Containment

Interfaces
concrete/clay

Concrete/waste package

LINE 2

Chemical degradation
Materials, aggressive ions,

cracking  ...
Containment coupling, mechanics

Containment capacity
Transport (D, K)

Radionuclides retention

Coupling
Degradation
Mechanics

Containment

Behaviour in storage
Irradiation, corrosion, freeze and thaw,

air carbonation ....

Integration
Coupled characterization /CLT

SCORE - CUBE

Old wastes
GT CEA/COG

Waste/matrix interaction

WASTE PACKAGE
Conditioning material

THM
Mock-up (MAQBETH)

Characterization and modelling

Behaviour under irradiation
Steel reinforcement corrosion

Engineering
Near-surface

support, concept

INTERIM STORAGE
Structural concrete

LINE 3

Long-term and short-term physico-chemical behaviour of concrete
according to intrinsic properties, scenarios and environment

Engineered Barrier
Waste package

long-term behaviour

Waste form performance
Integration studies

Mix waste package design

Interim storage concept
Materials critical

parameters



4CEA/DEN/DANS SRNL workshop on Cementitious Materials, December 12-14, Aiken / USA

• Second phase related to all radioactive wastes
– Since June 28, 2006 a new law determines the orientations of the research 

dedicated to waste management: main dead-line 2012 with a public debate
– New lines of the law:

• Spent fuel treatment: Partitioning and transmutation (leader CEA)
• Retreavable disposal in deep geological formation (leader ANDRA)
• Conditioning of wastes and temporary storage (leader ANDRA)

2006: a new start in the French strategy for wastes management

Disposal is now identified as the reference solution
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• Safety assessment and performance analysis of the facilities
– To guarantee waste package (wp) confinement (no dispersion)                

and mechanical properties (wp recovery) during interim storage 
– To limit the radionuclides (RN) release during disposal phase

• Operational analysis (role of concrete + wp functions) 
– Parameters to be evaluated at t0 (wp integrity)
– Parameters to be monitored during wp storage life-time
– Most favourable storage conditions for wp
– Recovery phase possible (300 years)?
– Wp state at 300 years compatible with disposal phase entrance?

• Scientific questions
– Wp chemical degradation related to underground water leaching
– Transport properties evolution during wp life-time
– RN physico-chemical state and location with time
– Cracking intensity and location predictability
– Amount of H2 gas generated by radiolysis
– Corrosion rate and products in alkaline medium
– Behaviour of organic matter in alkaline medium

Functional analyses (interim storage & disposal)

  

Storage design

Mix storage/disposal
design
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Concrete long-term evolution key phenomenologies

Wp life-time environments / key phenomena & potential impacts
Evolution in unsaturated closed system & Evolution in unsaturated open system

• Alkali-aggregate reaction

• Delayed ettringite formation

• Waste / matrix interaction

• Radiolysis

• Mechanical stress

• Drying / resaturation

• Air carbonation

• Corrosion

• Freeze & thaw cycling

• Organic matter degradation

Evolution in saturated open system

Reactions leading to hydrolysis and leaching of
hardened cement paste components (alteration
by water, pH < 12, temperature 25 – 85°C)

Reactions between aggressive fluids and
hardened cement paste components leading
to the formation of secondary phases

Loss of Loss of Decrease of strength Cracking               expansion

Alkalinity weight & stiffness & spalling deformation

• Increase of:
- porosity
- permeability
- diffusivity

• Decrease of:
- porosity
- permeability
- diffusivity

• Increase of:
- internal stress
- microcracking

Non expansive products Expansive products
(carbonates) (sulfates)
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Basic operational modelling strategy

Data acquisition through
well controlled & 

decoupled experiments

Phenomenological
models

Simplified models

Integrated (key phenomenologies) and coupled
(chemo-transport & mechanics) operational models

Waste package physical & mechanical states description + RN migration

Integrated Numerical platform
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Key unsaturated context problematics

• Key identified topics for the wp long-term storage evolution

– Radiolysis of embedding & overpacking cementitious matrices
H2 gas generation and release (source term) facility safety
Gas overpressures (wp mechanical behaviour) wp bursting

– Concrete container air carbonation
Low pH propagation front reinforcements depassivation
= corrosion
Calcite (CaCO3) precipitation radiolytic H2 gas release lowering

– Degradation of reinforced concrete related to corrosion
Expansive corrosion products formation wp damaging
Alteration of wp confinement property
Wp recovery impossibility
Waste-form re-encapsulation (disposal entrance phase 
compatibility)?
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Radiolysis problematics in cementitious media

α or βγ irradiation
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Radiolysis: decomposition of pore-water by ionizing radiations
– Estimation of the H2 gas wp source term (chemo-transport coupling)
– Evaluation of the wp gas overpressurization risk (mechanical effect)

Data analysis of real waste package tests case + simulation
Validation experiments model robustness evaluation (CHEMSIMUL)
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Concrete atmospheric carbonation
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• Air carbonation: a key factor for corrosion process of reinforced 
concrete structures (pH drop at the reinforcement/concrete interface)

– Evaluation of the natural carbonation front propagation kinetics
Concrete properties, temperature and relative humidity conditions

Development of a simplified chemo-transport model
Experimental validation through accelerated carbonation tests and field data
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Main scientific aspects:

• CIM 1: Phenomenology
– Corrosion rates & products + transition 

conditions between passive - active 
states

– Corrosion model development 
unsaturated conditions (carbonation)

• CIM 2: Mechanical behaviour
– Mechanical impact of corrosion 

products growth (data acquisition)
– Concrete damage model development

• CIM 3: Long-term prediction
– Phenomenological knowledge & models 

validation through field experiences

Corrosion of reinforced concrete structures: CIMETAL Project

Air carbonation
phenomenology ChloridesTransport process

Depassivation
phenomena

Corrosion kineticsCorrosion products nature

Facies of cracking Delay of appearance
of cracks (t)

Estimation of reinforced
structure life time (t)

Impact on transport 
properties

Phenomenological
corrosion model

Mechanical damage 
model

O2

Strength capacity
calculation model

Analogues & 
Field 

experiences
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(L’Hostis et al., 2005)

• Operational objectives: concrete structures life-time evaluation & ruin prevention

• Scientific objectives: phenomenology understanding, models development & validation
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• Concrete pore-water / FeE500 corrosion rates and products
Corrosion: phenomenological knowledge and modelling

CaCO3, pH=8.3 
Vcorr=300 µm/y.
Lepidocrocite, magnetite

CaCO3 + SiO2 (am), 
pH=8.3 Vcorr=180 µm/y.
Magnetite, siderite

CaCO3 + SiO2 (am) + 
NaHCO3, pH=9.1 
Vcorr=80 µm/y. (GR CO3

2-)

CaCO3 + SiO2 (am) + NaHCO3 +
CaSO4, pH=8.0 Vcorr=80 µm/y.
Calcite, Ferroxyhite?

(Huet et 
al., 2004)

• Damage modelling: through-going 
cracks appearance delay (exp. / sim.)

Oblique non through-going crack

Vertical through-going crack

Oblique non through-going crackOblique non through-going crack

Vertical through-going crack

Oblique non through-going crack

• Estimation of average corrosion 
rates in natural analogue systems

(Millard et al.,  2004)

(Chitty et al., 2005)
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Key saturated context problematics

• Key identified topics for the wp long-term disposal evolution
– Concrete leaching by underground waters leading to:

Chemical degradation of cementitious phases
Dissolution / precipitation processes
Microstructure and transport properties evolution (feedback effect) 
Mechanical effect (expansive phenomena, cracking…)
Impact on radionuclides (RN) transport
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• Objective:
– Prediction of cement-based materials chemical degradation in relation with 

mineralogical, microstructural and transport coefficient changes

• Scientific approach means:
– Phenomenological knowledge of key phenomena and associated parameters
– Models development & numerical simulation (chemistry-transport coupling)
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(Adenot, 1992; Le Bescop et al., 2000; Peycelon et al., 2001)



15CEA/DEN/DANS SRNL workshop on Cementitious Materials, December 12-14, Aiken / USA

Leaching studies: materials and chemical environment influence
• Leaching experiments & models validation
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Micro-Macro transport approach / Mechanics coupling

• External sulphate attack: phenomenological understanding & CT-M modelling
– Cement paste decalcification and SO4

2- ions diffusion
– Gypsum & ettringite precipitation (SO4

2- + hydrated
and anhydrous aluminates)
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• Microstructure – transport (diffusion) coupled approach (Microstrans)
– Hydration model + homogeneisation method: properties of an heterogeneous 

system (REV) based on elementary properties of components (microscale)
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Operatinal modelling approach (wp long-term behaviour)

MOP 2005: decalcification + carbonation + 
cracking + RN transport + De=f(Ø) (Peycelon et al., 2001; Richet et al., 2004)
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Conclusion

• Prediction of concrete structures and cemented waste package long-
term evolution in storage and disposal context

– Scientific & operational strategy / approach:
Phenomenological understanding of dominant processes & mechanisms
Phenomenological models development
Phenomenologies coupling (ie. Hydrolysis, carbonates, sulphates, T°C…)
Chemistry, transport & mechanical processes coupling
Simplified modelling tools (MOP) to be integrated in numerical platform

– Areas to be strengthened and associated main future works
Chemo-transport and mechanical coupling
Microstructure-diffusion model
Blended cement
Integration of “storage phase” = corrosion impact + (cracking)
MOP ability to describe real underground systems (to be strengthened)
Capacity to simulate the corrosion in degraded cement-based materials
Corrosion model coupling with a mechanical damage model


